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The stability of a periodically heated layer of fluid 
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The stability of an infinite layer of fluid of uniform thickness a t  rest with two horizontal 
boundaries is investigated when the difference between the temperatures a t  the top and 
bottom boundaries has a component which is a fluctuating periodic function of time 
in addition to a constant part. When both boundaries are free small fluctuations have 
a stabilizing effect on the layer, while large fluctuations tend to make i t  less stable, 
consistently with the numerical results of Yih & Li (1 972); the effect is attributable 
entirely to the variation of the temperature gradient with time. An approximate 
relation between the mean Rayleigh number and the amplitude of the fluctuations is 
found which separates stable situations from unstable ones. This is compared with the 
criteria deduced by Homsy (1974) using energy arguments for disturbances of any 
amplitude. 

1. Introduction 
When a layer of fluid is heated from below or cooled from above in a manner which 

gives a periodic change in the temperature gradient in time and consequent variations 
in the temperature distribution vertically, the conditions under which i t  becomes un- 
stable are not necessarily the same as in the classical BBnard experiment with a con- 
stant temperature gradient (Graham 1933; Chandra 1938; Sutton 1950). This and 
related problems have received a substantial amount of attention, and the subject of 
modification of stability limits in modulated flows has been reviewed by Davis ( 1  976). 
In the case of the BBnard problem, when the applied frequency is very low the effect 
of a small-amplitude modulation is to stabilize the layer, but what happens as the 
amplitude is increased is less certain. The numerical work of Yih & Li (1972) shows 
that the layer reaches a maximum degree of stability as the modulation is increased, 
after which it becomes less stable. Their calculations were carried out for moderate 
values of the applied frequency so that there was substantial variation of the tem- 
perature gradient in space as well as in time. Since Currie (1967) has shown that a 
variation in space alone can sometimes have a stabilizing effect i t  is not clear whether 
the existence of this optimum level of modulation was a simple consequence of the 
periodicity of the temperature gradient, or a result of the accompanying variation in 
space. 

Homsy ( 1  974) used the method of energy to produce two stability criteria for a 
large class of BBnard problems, both applicable to disturbances of arbitrary amplitude. 
The first was ‘ stronglyglobal stability’, which he definedto mean that theenergydecays 
monotonically and exponentially; the second is ‘asymptotic stability’, which means 
that the energy decays asymptotically to zero over many cycles of modulation. He found 
that in many cases the energy and linear stability theory limits lie close to one another. 
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It is the purpose of this paper to investigate whether the reduction of stability for 
large-amplitude modulation can be accounted for without having to  appeal to  the 
effect of spatial variation in the temperature gradient, and to  relate the result to 
Homsy’s stability criteria. To do this the problem of a layer of fluid with two free 
surfaces periodically heated a t  low frequency will be considered in detail; the variation 
in time is then so slow that the temperature gradient is almost constant in space a t  
any given instant, but superimposed on this steady cooling is a periodic fluctuation. 
The problem has been studied by Homsy, and by Rosenblat & Herbert (1970) when 
the amplitude of modulation is small, and it will be shown here that the analysis may 
be extended to cover larger amplitudes as well. 

2. Analysis 
The equations of motion for a layer of fluid in which the mean temperature gradient 

is not a constant but a function of time were first obtained by Goldstein (1959). 
Suppose the layer of fluid has mean density pot kinematic viscosity v ,  thermal 
diffusivity K and coefficient of expansion a,  with temperature T and components 
(u’,v’, w’)  of the velocity vector u‘ a t  a point with co-ordinates (d7  y‘,z‘) a t  time t ’ .  
If the temperature distribution is p in a solution with no mean velocity of the full 
set of equations governing the motion of the layer then, following Rosenblat & 
Herbert, equations governing small perturbations in u‘ and T can be found. If the 
solutions for the vertical component of u’ and for T- are sought equal to  the real 
parts of 

respectively, where W(z’,t’) and @ ( X I ,  t ’ )  are complex functions of z’ andt‘, theseequa- 
tions are 

W(z’, t ’ )  exp { i ( k l d  + k2y’) } ,  O(z‘, t ’ )  exp { i ( k , x ’  + k, y’)} 

where Ic2 = kf + ki. If the lower boundary of the layer is held at a constant temperature 
To, and the surface of the layer, z’ = h, is cooled to a prescribed but fluctuating tem- 
perature To - Tl - T2 cos Q’t’, p is given by the real part of 

sinh (z‘(iCl’/~)B) ei”,t’ 
To-T,z’/h-T2 

sinh ( ~ Q ’ / K ) )  

(Rosenblat & Herbert, equation (2.13)). 

rather than space, we shall here only consider the case when 
I n  order to see the general characteristics of the dependence of the solution on time 

h J 2 ~  < Q‘-*. (3) 

T is then given approximately by To - z’(Tl + T, cos Cl’t’)/h, so that, providedcondition 
(3) is approximately satisfied, the temperature gradient is given by 

aF - = - (TI + T2 cos Q’t’) /h.  
8.2 ’ 
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With this approximation for the temperature gradient, put (1) and ( 2 )  in dimension- 
less form by writing 

z' = zh, t' = h2t/v, a' = vQ/h2, k2 = a2/h2, R = agT, h 3 / ~ v ,  S = agT! h 3 / ~ v .  

Equation ( 1 )  is now 

and if Pr = V / K  is the Prandtl number (1) and ( 2 )  can be combined to give 

(?-Up) a22 W = -a2(R+ScosQt)  W .  ( 5 )  

Here R is the mean Rayleigh number, so clearly, if R + S is less than Rc where Ec 
is the least Rayleigh number for which an unstable solution exists in the corresponding 
problem with S 3 0, the temperature gradient is always stable and the layer of fluid 
can never become unstable. If R - S > Ec the layer is always unstable, while if R lies 
between RC - S and Ec + S it can pass through a phase in which it is temporarily 
unstable followed by another in which the disturbances decay again. The problem 
is to find the circumstances under which a disturbance can, over a complete cycle, 
experience a net gain in amplitude. 

The problem to be considered is the simplest possible one, which, although some- 
times rather hypothetical when regarded as a laboratory experiment, has the merit 
of analytical simplicity so that some insight may be gained into the possible behaviour 
of such a layer in more realistic (but mathematically less tractable) situations. In  the 
example studied here, the upper and lower surfaces are considered to be given specified 
temperatures. Equation (4) then shows that 

( g - a z )  (g-az-;) w = 0 a t  z = 0, I ;  

the normal component of velocity at the boundaries must vanish, so that 

W = O  a t  z = O , l ,  

and in addition we shall suppose that the boundaries are free with the consequence 
that only the normal component of the stress tensor can be non-zero. This implies 
(Chandrasekhar 1961, p. 22)  that  

- =  a2w 0.  
a22 

All these boundary conditions can be satisfied if W is of the form 

sin nnz F ( t  ) ; 

equation (5) is satisfied provided that 

where N = a2+ n2n2. If we write cr = - (Pr  + 1 )  N / 2 P r ,  F can be expressed in the form 

e'tM( t )  
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so that M is a solut.ion of Mathieu's equation 

~ ( t )  M = 0 
d 2 M  
dt2 
-- (7) 

when 
N2(Pr-  1 ) 2  Ra2 Sa2 

x ( t )  = 4Pr2 N P r  N P r  +-+- cos at. 

A result of particular importance is Floquet's theorem (see Abramowitz & Stegun 
1965, p. 727),  which implies that, unless n is an integer, the general solution of 
Mathieu's equation can be expressed in the form 

A eimtP(t) + Be-imtP( - t ) ,  

where m may be real or complex and the function P is periodic with period 2n/Q. 
The condition for neutral stability is thus 

N =  IYml (Pr  + 1) 
2Pr 

and this relation divides the (a2, R,  S) space into a region in which the corresponding 
solution of (6) is stable and others in which it is not. It is possible to obtain an 
approximation to the neutral stability surfaces by considering asymptotic solutions of 
Mathieu's equation given by the Horn-Jeffreys method (Jeffreys 1924). This shows 
that there exist solutions of (7) for large values of Q-lllxll* of the asymptotic form 

It should be noticed that this solution shows that the dominant effect is the integral 
of instantaneous values of the coefficient of M in (7) modified only by a relatively 
unimportant factor x-i. I n  general the solution has an oscillatory character for part 
of a period, followed by an appropriate combination of exponential growth and decay. 
The asymptotic solution fails when x ( t )  = 0, but the transition has been thoroughly 
investigated by Jeffreys (1924)) Strutt (1943) and others. The worst possible case, 
which is the one of principal concern here, is the one in which a solution that is initially 
growing exponentially enters an oscillatory phase and when it leaves it again continues 
in exponential growth with its amplitude altered only by the changes in x-4, which 
affect all solutions equally. All the other solutions grow less rapidly than this one, 
and so an equation for the envelope of the neutral stability surfaces (obtained pre- 
viously by Rosenblat & Herbert 1970) is given by 

when S is small enough for x to be positive throughout the cycle, this is the same 
criterion as that employed by Gresho & Sani (1970).  The actual regions in the (a2, R, S) 
space in which the unstable solutions exist consist of an infinite number of tongues all 
tangent to (8) and lying above it. Their exact location will depend on the particular 
values for Q, Pr and n, and their boundaries are given by 

cosh (n(Pr + 1) N / P r  Q} = cosh (WJ:'" ~ * d t }  cos [ 9/02n'n ( - x )*d t )  (9) 

(Strutt 1932, p. 234), thus lying above (8). 
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FIGURE 1 .  This graph shows the envelope given by (9) of the marginal stability curves when 
Pr = 7 ,  n = 1 and R = 0 as a thick line. The isolated thin lines show the centre-lines of stable 
areas. Between each adjacent pair lies an unstable tongue. For clarity, only parts of a few have 
been drawn; the unstable regions of those which have been shown are shaded. 

We need only be concerned with unstable solutions given by this approximation, 
and for these a least estimate of llxll* is provided by (8). Larger values of R correspond 
to more unstable solutions with larger values of llxllf. The neutral stability surface is 
thus given approximately by (8) provided that 

even though the stable solutions a t  small values of R are not given accurately by the 
asymptotic solution. Note that condition (10) is a consequence of (3) ,  since the latter 
can be written RPr < 1, 

Two examples will be considered to illustrate the general characteristics of the 
solutions of (8) and (9).  The first is one in which there is no mean temperature gradient 
so that R = 0 but in which the value of S is considered to be adjustable, while in the 
second example S is fixed but R is variable. I n  each case we are concerned only with 
plane sections of the general stability surfaces. 

The first is illustrated in figure 1, which shows the envelope and tongues using 
approximation (9)  when Pr = 7,  n = 1 and R = 0 so that the mean temperature 
gradient is zero; !2 has been taken to be equal to one in order to show the tongues, 
which are very closely spaced indeed when R < 1. The asymptotic approximation is 
nonetheless reasonably satisfactory. The equation of the envelope (which is un- 
affected by the particular choice of small value for Q) is approximately 

7Sa2 = 8.6 x 9(a2 + n2)3 
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with a minimum of S, S, 2: 7300, a t  a: = 4n2. Similar curves may be drawn for different 
values of n for which it is found that the minimum values of S attained by the enve- 
lopes are approximately 7300n4, so the least stable mode is the first. The error 6s 
introduced by using the minimum values of S on the envelope instead of the minimum 
value on the boundaries of the tongues is of the order of 1030B2, that  is, an error of 
about l4QY0. Since this estimate is based on the least critical values of S a t  a," = in2 
and the envelope is relatively flat there, the actual error for S, (though not for a,") 
will usually be considerably less. 

The general characteristics of the solution are similar for other problems of the type 
in which the layer passes alternately through phases in which the layer is intrinsically 
stable, then unstable, and for part of the time passes through an oscillatory phase. 
The most useful observation from the point of view of the analytical investigation of 
more sophisticated problems is that the stability of the layer can be determined with 
considerable accuracy by considering only the minimum of the envelope of the bound- 
ing tongues in the (a2, s) plane in which the disturbances are unstable. 

The second example is one in which S is considered to be given but R is variable. 
It is possible to recover the results of Venezian (1969), Rosenblat & Herbert (1970), 
and Gresho & Sani ( 1  970) by considering the case when S < R so that the problem is 
not very different from the one in which the temperature gradient is steady. If we 
take n = 1 and B < 1 the neutral stability curve is given by 

a2 Pr  s2 9 

N 3  
a2 2(Pr + l ) 2  N3 

R=-+ 

which again has a minimum at  a2 = in2 and a corresponding critical value for R of 

2Pr S2 
T n  +27(Pr+ 1)2?r" 
2 7  4 

(obtained by both Venezian and Gresho & Sani) so that in fact the presence of suffi- 
ciently small fluctuations in the temperature gradient has a stabilizing effect. I n  this 
instance the curve is not just an envelope but in fact is everywhere a division of the 
plane between stable and unstable solutions. 

3. The neutral stability condition 

disturbances of any wavenumber, write the bounding surface (8) as either 
In  order to determine the combinations of R and S for which the layer is stable to 

or 

where 

arcsin ris 
(r-ssint)gdt = n, s > r ,  

4 Pr  a2S 
= (E)2+(;,T:):;3' = (Pr+  1)2N3' 

These equations describe a neutral stability envelope in the (a2, R, S) space, which is 
illustrated in figure 2. The stable values of R and S are those for which any line 
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FIGURE 2. This illustrates the relation between the stability surface in the (a2, R, S )  space and 
the curve relating critical values of r and s shown in figure 3. The curve is here represented by 
the line ABC on the neutral stability surface, and consists of those points lying nearest to R = 0 
(when R > 0). They all lie in the plane az = inz. 

parallel to the a2 axis fails to cut the envelope. This may be true for some others as 
well, though in general the error is not likely to be large except perhaps for values of 
r and s near to the region where transition from formula ( 1  1 )  to formula ( 1  2 )  takes 
place. 

It is clear from figure 2 that the line ABC on this surface (where lines parallel to the 
a2 axis are all tangent to the surface) relates critical values of R and S, and that a t  
these points aR/aa2 and aS/aa2 both vanish. Under these conditions ar/aa2 and 

are both proportional to n2-2a2  and so for both ( 1 1 )  and (12) the critical 
wavenumber always occurs a t  a: = a+, irrespective of which equation applies, a 
result found to  be approximately true by Rosenblat & Tanaka (1971) up to moderate 
values of s / r  for the problem with rigid boundaries. The corresponding values of re 
and s, are respectively 

113) 
l 6 P r R  and 16 P r S  r&)' -k 27(Pr + 1)2 n4 27(Pr + l)2n4' 

When S = 0 so that s = 0 the case of a steady mean temperature gradient is obtained 
with the critical value for R of 27n4/4. As S increases relation (11) initially applies 
and since the left-hand side is a decreasing function of s i t  follows that the critical 
Rayleigh number for instability must rise. This continues to be true at least until 
re = s, = n2/8, which corresponds to 

For greater values of S the critical value of R has to be determined from (12). 
6 PLM I 1 0  
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IV 

FIGURE 3. The relation between r and s in the plane a2 = -&r2 of the (a2, R, S )  space is shown by 
the thick curve. It is a relation between the critical values of R and S separating solutions which 
are stable for all values of a2 from those which are (apart from some reservations mentioned in 
the text) unstable for some values of a2. For values of R and S giving r and s to the right of the 
curve the layer is unstable while for values to the left it  is stable according to the linear analysis; 
dots show the points a t  which transition from (1 1) to (12) occurs. Homsy’s criterion for global 
stability is shown by the thin line and his criterion for asymptotic stability for Pr = 1 when 
r > 0 by the broken line. 

It is a t  this stage that the solutions can enter an oscillatory phase with the conse- 
quence that not all points beyond the envelope (8) correspond to unstable solutions. 
Initially the left-hand side of (12) is increasing and R, continues to rise. However, in 
due course a maximum appears and R, begins to fall as S is increased. It then con- 
tinues to decrease without bound, even passing into negative values. This means that 
if the amplitude of the variations in the temperature gradient are very big indeed a 
progressively larger intrinsically stable mean gradient is required to ensure stability 
over a period. The effect of large-amplitude fluctuations (in so far as these can be 
meaningfully achieved in practice) is to destabilize the layer. The values of R and X 
for which the maximum critical value of R occurs can be obtained from rc and s, 
above when they satisfy (12), and also 

arosinris sint 
dt = 0. s -4. ( r  - s sin t )*  

Approximate values are r = 1.4 and s = 2.1. 
Equation (1 1) can be rewritten as 

7r 
E(&) =- 

2(r + 5)) 
and (1 2 )  as 
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where K and E are complete elliptic integrals of the first and second kind respectively 
(Abramowitz & Stegun, p. 590). The first form was found by Rosenblat & Herbert, 
but they did not carry their investigations further. From these relations it is possible 
to calculate the dependence of the critical values of r and s on each other. The resulting 
curve (which, as was pointed out above, lies in the plane a2 = &r2) is shown in figure 
3; the corresponding values for R and S for given Prandtl number can be recovered 
from (13). It is illuminating to compare it with the exact neutral stability curves 
computed by Yih & Li, and displayed in figures 2 and 3 of their paper. Although the 
problem considered by them was rather different it is quite clear that  there is a strong 
qualitative similarity with the present result and it is reasonable to suppose that the 
main cause in their case as well as here is the variation of the temperature gradient in 
time, rather than (as 'might be possible in their problem but not in ours) its consequent 
variation in space. 

4. Discussion 
It is of considerable interest to compare the marginal stability curve found here 

for the problem with two free boundaries, with the two general criteria found by 
Homsy (1974) and discussed in some detail for this particular example. His criterion 
for global stability is equation (4.6) of his paper and has the simple interpretation 
that the layer must be stable at all times by the standard test appropriate to  the 
steady problem. Expressed in terms of the values of r and s when a2 = in2 by means 
of (13), it becomes 

r < i-IsI. 

His analysis presupposes that the Rayleigh number is positive, but the result almost 
certainly generalizes; the pair of lines corresponding 60 it is shown by the continuous 
thin line in figure 2. 

Homsy's condition for asymptotic stability gives rise to a much more complicated 
relation between the critical values of r and s, and when rewritten in the notation 
used here becomes 

where 

He gives forms for the relation in the special cases Pr -+ 0, Pr 3 m and Pr = 1,  but 
in fact the derivations given for these relations are in all cases valid for limited ranges 
of r and s. The one where Pr = 1 for example gives r = 1 for Is\ < 1 ; Homsy's analysis 
presumes that R is necessarily positive so that the condition is not automatically 
valid for large values of s. I n  general, the relation between r and s will depend on Pr 
and is not readily obtainable. It is possible to proceed further with the special case 
for which Pr = 1 however, since in that instance t; = 0 and for JsJ > r the relation 
becomes 

6-2 
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or 

This relation can be investigated numerically when r > 0 (the only circumstance for 
which the derivation of (14) is valid) and the resulting curve is shown by the broken 
line in figure 3. Although it is not possible to show the difference on the scale of the 
graph, the first term in ( 15) is smaller at  the left-hand end of the curve, while the second 
term is less by a small margin a t  the right-hand end. As a result the curved portion 
is a little closer to the thick curve than would be so if only the parabolic relation im- 
plied by the first term of (15) were employed. 

The three curves shown in figure 3 divide the ( r ,  s) plane into four regions labelled 
I-IV, and it is possible to provide an interpretation of them. For all values of r and s 
in I the layer is globally stable whereas in I1 this is not necessarily so, although any 
disturbance of whatever amplitude is guaranteed ultimately to decay to zero even 
though it may at  certain times have increasing energy. In region IV disturbances are 
unstable by all criteria; in region 111, however, there is no assurance that they will 
decay to zero, even though they will do so if their amplitude is sufficiently small for 
the linearized theory to be valid. In practice it seems likely that what will be observed 
will be intermittent growth of individual disturbances followed by decay to a level 
which may not be detectable. These could, however, lead to substantial and unpre- 
dictable effects on the transport of heat, mass and momentum in the system (Davis, 
p. 58). 

In conclusion, we have seen that the linearized theory shows that modulation at 
large amplitude has a strongly destabilizing effect, and in consequence there is a 
maximum degree of enhancement of stability; this effect can be caused by the periodi- 
city of the temperature gradient in time alone. 
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